Localizing GNU/Linux and XFree86
A Thailand’s Experience

Theppitak Karoonboonyanan
thep@linux.thai.net

January 2004

Abstract

This paper summarizes information gathered by the author during
localizing GNU /Linux and XFree86 for Thai. It is by no means a complete
reference nor a universal guide for all languages. The author just hopes
it is useful for other localizers.

Internationalization is a practice commonly used for making software
adaptable to local cultures without modification. Most of this paper dis-
cusses this framework and how to localize the system for new locales.

1 Locale

1.1 What is Locale?

Locale is a term introduced by the concept of internationalization (I18N), in
which generic frameworks are made so that software can adjust its behaviors to
the requirements of different native languages, cultural conventions and coded
character sets, without modification nor re-compilation.

Within such frameworks, locales are defined for describing particular cul-
tures. Users can configure their systems to pick up their locales. The programs
will load the corresponding predefined locale definition for working. Therefore,
to make internationalized software support a new language or culture, one can
create the locale definition for it, fill up the required information, and things
just work without touching the software code.

The most basic kind of locale in GNU/Linux is the locale for the C library
itself. According to POSIX [1], some C functions are defined to be adaptable
to locales, such as date and time format, string collation, and so on. GNU
C library has implemented all of POSIX locale specifications, plus extensions
introduced in ISO/IEC 14652.

In addition to POSIX locale, a localization task most visible to users is
message translation. Most free software nowadays uses the framework provided
by GNU gettext, in which translated messages are complied into a hash database
to be looked up at run time. Again, the message database to load is determined
by locale chosen by users.

1.2 Locale Naming

A locale is described by its language, country and character set. The naming
convention as given in OpenlI18N guideline [2] is:

(lang) _(territory) . (codeset)[@({modifiers)]

where:

(lang) is a two-letter language code defined in ISO 639:1988 [3]. Three-letter
code in ISO 639-2 [4] is also allowed in the absence of the two-letter version.
The ISO 639-2 Registration Authority at Library of Congress [5] has a
complete list of language codes.

(territory) is a two-letter country code defined in ISO 3166-1:1997 [6]. You
can get the list of two-letter country codes on-line from the ISO 3166
Maintenance agency [7].

(codeset) describes the character set used in the locale.

(modifiers) adds more information for the locale by setting options (turn on
flags or use equal sign to set values). Options are separated by com-
mas. This part is optional and implementation-dependent. Different I18N
frameworks provide different options.

For example:

e fr CA.IS0-8859-1
= French language spoken in Canada using ISO-8859-1 character set

e th TH.TIS-620
= Thai language in Thailand using TIS-620 encoding

If (territory) or (codeset) is omitted, default values are usually resolved by
means of locale aliasing.

1.3 Character Sets

Character set is part of locale definition. It defines what language alphabets are
used and how they are encoded for information interchange.

In GNU C library (glibc), locales are described in terms of Unicode. A new
character set is described as a Unicode subset, with each element associated by
a byte string to be encoded in the target character set. For example, the UTF-8
encoding is described like this:

<U0041> /x41 LATIN CAPITAL LETTER A

<U0042> /x42 LATIN CAPITAL LETTER B
<U0043> /x43 LATIN CAPITAL LETTER C

<UOEO1> /xe0/xb8/x81 THAI CHARACTER KO KAI
<UOE02> /xe0/xb8/x82 THAI CHARACTER KHO KHAI
<UOE03> /xe0/xb8/x83 THAI CHARACTER KHO KHUAT

The first column is the Unicode value. The second is the encoded byte string.
And the rests are comments.

As another example, TIS-620 encoding for Thai is simple 8-bit single-byte.
The first half of the code table is the same as ASCII, and the second half
begins encoding THAI CHARACTER KO KAI (U+0E01) at 0xAl. Therefore,
the charmap just looks like:

<U0041> /x41 LATIN CAPITAL LETTER A
<U0042> /x42 LATIN CAPITAL LETTER B
<U0043> /x43 LATIN CAPITAL LETTER C

<UOEO1> /xal THATI CHARACTER KO KAI
<UOE02> /xa2 THAI CHARACTER KHO KHAI
<UOE03> /xa3 THAI CHARACTER KHO KHUAT

1.4 POSIX Cultural Conventions

According to POSIX, data of following categories are to be defined so that a
number of C functions can adjust their behaviors as per locale:

category description
LC_CTYPE character classification
LC_COLLATE | string collation
LC_TIME date and time format

LC_NUMERIC | number format
LC_MONETARY | currentcy format
LC_MESSAGES | locale messages

1.4.1 Setting Locale

A C application can set current locale with the setlocale() function (declared
in (locale.h)). The first argument is the desired category to set, or LC_ALL to set
all categories. The second argument is the locale name to choose, or an empty
string ("") to rely on system environment setting.

Therefore, a typical internationalized C program may call:

#include <locale.h>

const char *prev_locale;
prev_locale = setlocale(LC_ALL, "");

at program initialization, and the system environments are looked up to deter-
mine the appropriate locale as follows:

1. If LC_ALL is defined, use it as locale name.

2. Otherwise, if corresponding values of LC_CTYPE, LC_COLLATE, ..., LC_MESSAGES
are defined, use them as locale names for corresponding categories.

3. For categories that are still undefined by above checks, and LANG is defined,
use it as locale name.

4. For categories that still undefined by above checks, fall back to C (or
POSIX) locale.

The C or POSIX locale is a dummy locale in which all behaviors are C defaults
(e.g. ASCII sort for LC_COLLATE).

1.4.2 LC_CTYPE
LC_CTYPE defines character classification for functions declared in (ctype.h):

iscntrl() isalnum() isupper()
isgraph() isalpha() tolower ()
isprint () isdigit) toupper ()
isspace() isxdigit()

ispunct () islower ()

Since glibc is Unicode-based, and all character sets are defined as Unicode
subsets, it makes no sense to redefine character properties in each locale. Typ-
ically, LC_CTYPE category in most locale definitions just refer to the default
definition (called “i18n”).

1.4.3 LC_COLLATE
C functions that are affected by LC_COLLATE are strcoll() and strxfrm().

strcoll() compares two strings in the same manner as stremp() does. (Note
that strcmp () behavior never changes under different locales.)

strxfrm() translate string into a form that can be compared using strcmp ()
to get the same result as directly compared with strcoll().

LC_COLLATE specification is the most complicated one among all locale
categories. There is a separate standard for collating Unicode strings, called
ISO/IEC 14651 International String Ordering. [10] [11] And glibc default locale
definition is based on it. You may consider investigating the Common Tailorable
Template (CTT) defined there before beginning your own locale definition.

Nevertheless, Thai string ordering, despite its well-defined and much-simplified
principle, still leaves one exception that makes it require a separate definition:
the leading vowel that is put in front of its consonant needs to be reordered
before sorting. And as far as I know, Lao is the only other language that suffers
from the same situation.

In any case that brings you to defining your own LC_CTYPE definition, you
need to know the data structure. In short, the collation is multi-pass. Character
weights are defined in multiple levels (four levels for ISO/IEC 14651). Some
characters can be ignored (by using “IlGNORE” as weight) at first passes and
be brought into consideration in later passes for finer judgement.

1.4.4 LC_TIME

LC_TIME allows you to localize date/time strings formatted by the strftime ()
function. You can translate the days of week and months into your own lan-
guage, define appropriate date and time formats, and even define locale era.

1.4.5 LC_NUMERIC & LC_MONETARY

Some cultures use different conventions for writing number, namely the decimal
point, thousand separator and grouping. That is what LC_NUMERIC is for.

LC_MONETARY defines currency symbols used in the locale (reference: ISO
4217 [8]) and how to write monetary amounts.

A single function localeconv() in (locale.h) is defined for retrieving infor-
mation from both locale categories. Glibc provides an extra function strfmon ()
(monetary.h) for formatting monetary amount as per LC_.MONETARY, but this
is not standard C function.

1.4.6 LC_MESSAGES

LC_MESSAGES is mostly used for message translation purposes. The only use
in POSIX locale is the description of yes/no answer. But no standard function
has been defined for it yet.

1.5 ISO/IEC 14652

ISO/IEC 14652 Specification method for cultural conventions [9] [11] is basically
an extended POSIX locale specification. In addition to the more details in each
of the six categories, it introduces six more:

category description

LC_PAPER paper size

LC_NAME personal name format
LC_ADDRESS address codes and format

LC_TELEPHONE telephone number
LC_MEASUREMENT | measurement units
LC_VERSIONS locale version
All above categories have already been supported by glibc. C applications
can retrieve all locale information using the nl_langinfo() function.

1.6 Building Locale

To build a locale, you need to prepare a locale definition file describing data for
ISO/IEC 14652 locale categories. (Please see the standard document for the
file format.) In addition, if you are also defining a new character set, you create
a charmap file for it, naming every character a symbolic name and describing
encoded byte strings as discussed in §1.3.

In general, glibc uses UCS symbolic names (<UXXXX>) in locale definition,
for convenience in generating locale data for any charmap.

The actual locale data to be used by C programs is in binary form. You
must compile the locale definition with the localedef command, which accepts
arguments like this:

localedef [-f (charmap)] [-i (input)] (name)

For example, to build th_TH locale from th_TH locale definition file, using
TIS-620 charmap:

localedef -f TIS-620 -i th_TH th_TH

You can use the locale command with “-a” option to check for installed
locales and “-m” option to list supported charmaps. Issuing the command with-
out argument would show the effects of the environment setting upon locale
categories.

2 Overview of GNU/Linux Desktop I18N

GTK+

GTK-IM | Pango

X Server

Font Server

freetype

GNU C Library

Figure 1: Overview of I18N Tasks for GNU/Linux Desktop

Now that we have discussed the I18N of GNU C library, let’s survey further
to what make up the whole GNU/Linux desktops in general.

The GNU/Linux desktop is composed of layers of subsystems working on
top of one another. In programmer’s point of view, the layers could be classified
as:

1. The “C Library” Layer. As C is the language for developing the UNIX
operating system, the lowest level of UNIX API is the C library, no matter
in what language your programs are written.

The C library for GNU/Linux is the GNU C library (glibc), while other
OS like *BSD has their own version inherited from the BSD UNIX.

2. The “X Window” Layer. As most UNIX systems, X Window provides
a network-transparent client-server graphical environment. The X server

takes care of all the hardware tasks, from driving graphics card to keyboard
and mouse events. All X applications are clients to the X server. The
connections are encapsulated by the X library (aka Xlib) function calls.

Upon GNU/Linux, the only system available for this layer is XFree86,
although there has recently been a fork called Xouvert, which may release
the first beta soon.

Toolkits. Writing a program using the low-level Xlib is very tedious, and
can be a source of inconsistent GUI when all applications draw menus and
buttons by their own preferences. Thus, some libraries are developed as
a middle layer, which can help reduce both problems. In X terminology,
these libraries are called toolkits. And the GUI components they provide,
such as buttons, text entry, etc., are called widgets.

Many historic toolkits have been developed along the time, either by the
X Consortium like the X Toolkit and Athena widget set (Xaw), or by
vendors like XView from Sun, Motif from Open Group, etc. But for the
open source world, the major toolkits widely adopted are GTK+ (the
GIMP Toolkit) and Q.

Desktop Environments. Toolkits are significant tools for creating con-
sistent look-and-feels among the same set of programs. But to make a
complete desktop, applications need to interoperate more closely to form
a big picture. The concept of desktop environment is thus invented to pro-
vide common conventions, resource sharing, and communication among
programs.

The first desktop environment ever created on UNIX platforms is CDFE
(Common Desktop Environment) by Open Group, based on its Motif
toolkit. But it is proprietary, anyway. The first open source desktop
environment for GNU/Linux is KDFE (K Desktop Environment), based on
TrollTech’s Qt. However, by some licensing condition of Qt at that time,
some developers don’t like it. And a second one is created, named GNOMFE
(GNU Network Object Modelling Environment), based on GTK+. Nowa-
days, although the licensing issue of Qt has been resolved, GNOME con-
tinues to grow and gets more supports by vendors and its community. As
a result, they become the major two desktops widely used on GNU/Linux.

The following sections and the next article in this series will continue the
discussion on the I18N frameworks for the subsystems above the C library.

3 I18N in X11R6

In X Version 11 Release 6 (X11R6), Xlib is internationalized via X locales, which
is composed of following components [12]:

1.

XLC - the locale object — provides information that depends on user’s
language environment, e.g. font set, character set,

XIM - the input method — manages text inputting,

XOM - the output method — manages text drawing.

The XLC data definition is composed of following categories [13]:

1. XLC_FONTSET defines the font sets (character and font encoding name)
used in the locale. This is also used in the XOM.

2. XLC_XLOCALE describes character set used in the locale, encoding,
conversion, and other attributes.

4 X Input Method

4.1 Keyboard maps

The first step to providing text input for a particular language is to prepare the
keyboard map. X11R6 handles keyboard map using the XKB extension.

When you start an X server on GNU/Linux, a virtual terminal is attached
to it in raw mode, so that keyboard events are sent from the kernel without any
translation.

The raw scan code of the key is then translated into keycode according to
the keyboard model. For XFree86 on PC, the keycode map is usually “xfree86”
as kept under /etc/X11/xkb/keycodes directory. The keycodes just represent
the key position in symbolic form, for further referencing.

The keycode is then translated into keysym according to the specified lay-
out, such as qwerty, dvorak, or a layout for specific language, chosen from the
dataunder /etc/X11/xkb/symbols directory. A keysym does not represent a
character yet, anyway. It requires Input Method to translate sequences of key
events into character, which would be described later. So, an analogy for the
meaning of keysym may be just the label screened on the key.

For XFree86, all the above setup are done via the setxkbmap command. (Set-
ting up values in /etc/X11/XF86Config means setting parameters for setxkbmap
at initial X server startup.) There are many ways of describing the configuration,
as explained in [14]. The default method for XFree86 4.x is by the “xfree86” rule
(XKB rules are kept under /etc/X11/xkb/rules), with additional parameters:

e model — pc104, pcl05, microsoft, microsoftplus, ...

e layout — en US, us, th, ...(For 4.0+, layouts can be mixed up to 64
groups)

e variant — (mostly for Latins) nodeadkeys

e option — group switching key, swap caps, LED indicator, etc. (See Table
1 and 2 for some examples.)

For example:

$ setxkbmap us,th -option grp:alt_shift_toggle,grp_led:scroll

sets layout using US symbols as the first group, and Thai symbols as the second
group. combination is used to toggle between the two groups.
ScrollLock LED will be the group indicator, which will be on when the current
group is not the first group, that is, on for Thai, off for US.

You can even mix more than two languages:

Table 1: XKB Options for Group Switching

Option Meaning

grp:switch RightAlt changes group while pressed
grp:lwin_switch LeftWin changes group while pressed
grp:rwin_switch RightWin changes group while pressed

:win_switch LeftWin or RightWin changes groupwhile pressed

grp

grp:toggle RightAlt toggles group
grp:lalt_toggle LeftAlt toggles group
grp:caps_toggle CapsLock toggles group
grp:shift_toggle Both Shifts toggle group
grp:alts_toggle Both Alts toggle group
grp:ctrls_toggle Both Ctrls toggle group
grp:ctrl_shift_toggle | Ctrl-Shift toggles group
grp:ctrl_alt_toggle Ctrl-Alt toggles group
grp:alt_shift toggle | Alt-Shift toggles group
grp:menu_toggle Menu toggles group
grp:lwin_toggle LeftWin toggles group
grp:rwin_toggle RightWin toggles group

1shift_toggle
rshift_toggle
lctrl_toggle
rctrl_toggle

LeftShift toggles group
RightShift toggles group
LeftCtrl toggles group
RightCtrl toggles group

grp:
grp:
grp:
grp:

Table 2: XKB Options for LED Indicator
Meaning

NumLock LED on if not first group
CapsLock LED on if not first group
ScrollLock LED on if not first group

Option
grp_led:num
grp_led:caps
grp-led:scroll

$ setxkbmap us,th,jp -option grp:alt_shift_toggle,grp_led:scroll

This loads trilingual layout. [ﬁ]— Shift | is used to rotate among the three
groups, that is, [Ai]— RightShift | chooses next group and [Alt]—[LeftShift]
chooses previous group. The selection wraps up to the other end when selecting
next group from the last, and previous from the first. (As a notice, you can see
no difference between the effects of M RightShift |and M RightShift

ScrollLock LED will be on when Thai or

when only two groups are used.)
Japanese group is active.

The arguments for setxkbmap can be specified in /etc/X11/XF86Config for
initialization on X server startup by describing the "InputDevice" section for
keyboard, for example:

Section "InputDevice"
Identifier "Generic Keyboard"
Driver "keyboard"

Option "CoreKeyboard"

Option "XkbRules" "xfree86"

Option "XkbModel" "microsoftplus"

Option "XkbLayout" "us,th_tis"

Option "XkbOptions" "grp:alt_shift_toggle,lv3:switch,grp_led:scroll"
EndSection

Notice the last four option lines. It tells setxkbmap to use “xfree86” rule, with
“microsoftplus” model (with internet keys), mixed layout of US and Thai
TTS-820.2538, and some more options for group toggle key and LED indicator.
The “lv3:switch” option is only for layout with level 3 (that is, more than
normal and shifted keys), which is the case for “th_tis” in XFree86 4.4.0. This

option sets [RightCtrl | as level-3 shift.

4.2 Providing a Keyboard Map

If the keyboard map for your language is not available, you need to prepare a
new one. In XKB terms, you need to prepare a symbols map describing keysyms
associated to the available keycodes.

The quickest way to start is to read the available symbols files under the
/etc/X11/xkb/symbols directory. In particular, the usual files used by default
rules of XFree86 4.3.0 are under the pc/ subdirectory. In these files, only one
group is defined per file, unlike those old files in the parent directory, in which
groups are pre-combined. This is because XFree86 4.3.0 provides a flexible
method for mixing keyboard layout.

Therefore, unless you need to support old versions of XFree86, all you need
to do is prepare a single-group symbols file under the pc/ subdirectory.

Here is some excerpt from the th_tis symbols file:

partial default alphanumeric_keys
xkb_symbols "basic" {
name [Group1]= "Thai (TIS-820.2538)";
// The thai layout defines a second keyboard group and changes
// the behavior of a few modifier keys.

// converted to THai keysysms - Pablo Saratxaga <pablo®@mandrakesoft.com>
// modified to TIS-820.2538 - Theppitak Karoonboonyanan <thep@linux.thai.net>

key <TLDE> { [0x1000e4f, 0x1000e5b] 7;

key <AEO1> { [Thai_baht, Thai_lakkhangyao] 7;
key <AE02> { [slash, Thai_leknung] };
key <AE03> { [minus, Thai_leksong] };

key <AE04> { [Thai_phosamphao, Thai_leksam] };

};

Each element in the xkb_symbols data, except the first one, is the associa-
tion of keysyms to the keycode for unshifted and shifted versions, respectively.
Here, some keysyms are predefined in Xlib. You can find the complete list in
<X11/keysymdef .h>. If the keysyms for your language are not defined there,
don’t panic. You can use the Unicode keysyms instead for XFree86 4.3.0, as

10

shown in the <TLDE> key entry. (In fact, this should be a more effective way for
adding new keysyms.) Just prefix the Unicode value with “0x100” to describe
the keysym for a single character.

For more details of the file format, please see [14].

When you finish, you need to regenerate the symbols.dir file so that your
symbols file is listed:

cd /etc/X11/xkb/symbols
xkbcomp -1lhlpR ’*’ -o ../symbols.dir

Then, you can try your new layout as described in §4.1.

As an extra addition, you may add your entry to /etc/X11/xkbcomp/rules/xfree86.1lst
so that some programs like kxkb for KDE can see your layout.

OK, you are happy with the newly fiddled keyboard map. Now you want
to include it in XFree86 source. In that case, the all data for XKB are in the
xc/programs/xkbcomp subdirectory.

4.3 X Input Method

For some languages, text input is as straightforward as one-to-one mapping
from keysyms to characters, such as English. For European languages, a little
complication is added by the accents. But for Chinese, Japanese and Korean,
the one-to-one mapping is undoubtably impossible. It requires some kinds of
keystrokes interpretation to obtain a character.

X Input Method (XIM) is a locale-based framework designed to address the
requirements of the text input process of any language. It is a separate service
for handling input events as requested by X clients.

Any text entry in X clients is represented by X Input Context (XIC). All the
keyboard events will be propagated to the XIM, who determines appropriate
action for the events based on current state of the XIC, and passes back the
resulted characters.

Internally, a common process of every XIM is to translate keyboard scan
code into keycode and then to keysym, by calling XKB, whose process detail
was described in §4.1. The further processes to convert keysyms into character
differ in different locales.

As an example, Thai XIM had been implemented as part of Xlib like those
for European languages since X11R6. It was so because Thai input method adds
just a little sequence check to the one-to-one mapping. However, some remaining
problems with the new XKB model has been fixed in XFree86 4.0.3 and 4.1.0,
as documented in [15] and [16]. Thai XIM converts every non-special key event
into character by calling XmbLookupString(), a wrapper to XLookupString().
XLookupString () translates the keycode to keysym by the aid of XKB, and the
XmbLookupString() wrapper code just translates the keysym into character
encoding as per locale. Then, the character is validated with Thai grammar
rules in order to determine whether to commit or drop it.

In general cases, however, XIM is usually implemented using the client-server
model. The discussion of XIM implementation in more details is beyond the
scope of this paper. Please see §13.5 of the Xlib document [17] and the XIM
protocol [18] for more information.

In summary, what happen in most XIM-supported applications are:

11

1. setlocale(LC_CTYPE, ...) to set the locale of the XIM.

2. XSetLocaleModifiers(...) to let Xlib choose appropriate XIM via the
“@im=...” X locale modifier.

3. XOpenIM(...) to open the XIM.
4. XCreateIC(Q) to create an XIC for each text entry.

5. Associate appropriate XIM callbacks to the XIC with the XSetICValues()
function. Before setting it, the client may query the XIM whether the call-

back is supported, by using the XGetIMValues (), with XNQueryICValiesList

argument.

6. In the event loop, call XFilterEvent () to pass events to XIM filter. If
it returns false, the client should discard the event. If it returns true,
the client should process the event. For KeyPress event, it should lookup

string from the key code using either XmbLookupString(), XwcLookupString(),

or Xutf8LookupString().

For step 2, supplying empty locale modifiers ("") means to rely on system
environment XMODIFIERS, so user can specify their favourite XIM, like this:

$ export LANG=th_TH.TIS-620
$ export XMODIFIERS="@im=Strict"

which specifies Strict input method for Thai locale.

5 Font Systems

5.1 Traditional X Font System

Traditional X font system in XFree86 4 supports bitmap fonts (BDF, PCF),
Type 1, and, with the aid of FreeType library, TrueType. All are managed at
the X server side, either by the X server itself via loadable modules or by a
dedicated X font server (XFS).

X fonts are referred to by X Logical Font Description (XLFD), in which font
properties are described, separated by hyphens:

-fndry-fmly-wght-slant-s Width-adstyl-pzlsz-ptSz-resz-resy-spc-avg Wdth-rgstry-encdng

For example:

-adobe-times-medium-r-normal--*-100-75-75-p-54-1s08859-1

means Times family by Adobe, medium weight, Roman upright shape (no slant),
normal width, no additional style, any pixel size, 10.0 points, 75x75 DPI design
resolution, proportional spacing, 5.4 pixels average glyph width, using ISO8859-
1 character set.

12

Some fields of the XLFD can be wildcard (‘*’) to mean the first matched
font in the system. For more details of XLFD, please see [19].

To add new fonts to X, you need to prepare a font list file (fonts.dir) in
the directory using the mkfontdir command for bitmap fonts, or mkfontscale
followed by mkfontdir for scalable fonts. After that, you just add the font path
to the X server or XFS, depending on your X server setup.

To add font path directly to X server (assuming that appropriate font sup-
port modules are loaded at X server startup):

$ xset fp+ /your/font/path
$ xst fp rehash

To make the fonts preloaded with the X server, add the FontPath lines to
your /etc/X11/XF86Config under the "Files" section:

Section "Files"
FontPath "/your/font/path"

EndSection

In case you use font server, modify /etc/X11/fs/config by adding your
font path to the catalog line:

catalogue = /usr/X11R6/1ib/X11/fonts/misc/,...,/your/font/path

and then restart xfs:

/etc/init.d/xfs restart

5.2 Xft and Fontconfig

XFree86 4 has introduced a number of extensions which brings to a new font
system:

e The X Render extension [20] for smooth rendering capability at server
side, such as alpha composing, anti-aliasing, sub-pixel positioning and
trapezoids.

e The Xft library [21], for X clients to access and rasterize vector fonts at
client side by utilizing the FreeType library and the X Render extension.

e The fontconfig library [22], split out of the Xft library for the non-X parts
so that all applications including non-GUI programs can share the same
font configuration.

As a result, the font management is moved from the server side to client side,
which is good for sharing the fonts with other systems outside X, such as
the printing process. As a plus, glyph shapes are anti-aliased, resulting in a
smoother appearance to the eyes.

13

Modern desktops, GNOME 2 and KDE 3, have already moved to this new
font configuration. The Pango rendering engine has even dropped the traditional
X font support in version 1.3 (development version). Therefore, it is supposed
to be default method, although the old X fonts are still needed for some existing
GTK+ 1.2 applications.

The main configuration file for the fontconfig library is /etc/fonts/fonts.conf.
The file is an XML data describing font (root) directories and other instructions
for font matching and customization. The default configuration in many sys-
tems points to system fonts at /usr/share/fonts/ and user fonts at “/.fonts/.
Some configuration may also cover the X fonts under the /usr/X11R6/1ib/X11/fonts/
directory. You can check the <dir> elements in the file.

Given this configuration, installing new fonts becomes simply copying fonts
into one of the defined directories, and then regenerating the font cache using
the command:

fc-cache -f

viola!
To list all available fonts, you use the fc-1ist command.

References

[1] The Open Group. The Single UNIX Specification, Version 3.
http://www.unix-systems.org/version3/ .

[2] OpenI18N.org. OpenI18N Locale Name Guideline [Version 1.1 —
2003-03-11].
http://www.openil8n.org/docs/text/LocNameGuide-V11.txt.

[3] ISO 639:1988 Codes for the representation of names of languages.

[4] ISO 639-2:1998 Codes for the representation of names of lan-
guages.

[5] Library of Congress. ISO 639-2 Registration Authority.
http://leweb.loc.gov/standards/is0639-2/.

[6] ISO 3166-1:1997 Codes for the representation of names of coun-
tries.

[7] ISO. ISO 3166 Maintenance agency (ISO 3166/MA) — ISO’s focal
point for country codes.
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html.

[8] ISO 4217 Currency and funds codes.
[9] ISO/IEC 14652 Specification method for cultural conventions.
[10] ISO/IEC 14651 International string ordering.

[11] ISO/IEC JTC1/SC22/WG20 - Internationalization.
http://anubis.dkuug.dk/jtcl /sc22/wg20/.

14

http://www.unix-systems.org/version3/
http://www.openi18n.org/docs/text/LocNameGuide-V11.txt
http://lcweb.loc.gov/standards/iso639-2/
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://anubis.dkuug.dk/jtc1/sc22/wg20/

[12]

[13]

[14]

[15]

[20]

[22]

Katsuhisa Yano and Yoshio Horiuchi. X11R6 Sample Implementation
Frame Work.
xc/doc/hardcopy/i18n/Framework.PS. gz.

Yoshio Horiuchi. X Locale Database Definition.
xc/doc/hardcopy/i18n/LocaleDB.PS.gz.

Ivan Pascal. X Keyboard Extension.
http://pascal.tsu.ru/en/xkb/.

Theppitak Karoonboonyanan. XFree86 Thai Supports.
http://linux.thai.net/thep/th-xwindow.

Theppitak Karoonboonyanan. Thai Input Method Implementations.
http://linux.thai.net/thep/th-xim.

James Gettys and Robert W. Scheifler. Xlib — C Language X Interface.
X Consortium Standard, X Version 11, Release 6.4.
xc/doc/hardcopy/X11/x1ib.PS.gz.

Masahiko Narita and Hideki Hiura. The Input Method Protocol Ver-
sion 1.0. X Consortium Standard, X Version 11, Release 6.4.
xc/doc/hardcopy/XIM/xim.PS.gz.

Jim Flowers. Stephen Gildea (Edit). X Logical Font Description Con-
ventions Version 1.5. X Consortium Standard, X Version 11, Release
6.4.

xc/doc/hardcopy/XLFD/x1£fd.PS.gz.

Keith Packard. Design and Implementation of the X Rendering
Extension. FREENIX Track, 2001 Useniz Annual Technical Conference,
Goston, MA, June 2001. USENIX.

http://keithp.com/ keithp/talks/usenix2001/.

Keith Packard. The Xft Font Library: Architecture and Users
Guide. XFree86 Technical Conference, The XFree86 Project, Inc., Oc-
tober 2001. Usenix Associatation.

http://keithp.com/ keithp/talks/xtc2001/.

Keith Packard. Font Configuration and Customization for Open
Source Systems. GNOME Users And Developer European Conference,
2002.

http://keithp.com/ keithp/talks/guadec2002/.

15

http://pascal.tsu.ru/en/xkb/
http://linux.thai.net/thep/th-xwindow
http://linux.thai.net/thep/th-xim
http://keithp.com/~keithp/talks/usenix2001/
http://keithp.com/~keithp/talks/xtc2001/
http://keithp.com/~keithp/talks/guadec2002/

	Locale
	What is Locale?
	Locale Naming
	Character Sets
	POSIX Cultural Conventions
	Setting Locale
	LC_CTYPE
	LC_COLLATE
	LC_TIME
	LC_NUMERIC & LC_MONETARY
	LC_MESSAGES

	ISO/IEC 14652
	Building Locale

	Overview of GNU/Linux Desktop I18N
	I18N in X11R6
	X Input Method
	Keyboard maps
	Providing a Keyboard Map
	X Input Method

	Font Systems
	Traditional X Font System
	Xft and Fontconfig

